In mathematics, a natural number in a given number base is a p {\displaystyle p} -Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has p {\displaystyle p} digits, that add up to the original number. For example, in base 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 25 = 45. The numbers are named after D. R. Kaprekar.

Definition and properties

Let n {\displaystyle n} be a natural number. Then the Kaprekar function for base b > 1 {\displaystyle b>1} and power p > 0 {\displaystyle p>0} F p , b : N N {\displaystyle F_{p,b}:\mathbb {N} \rightarrow \mathbb {N} } is defined to be the following:

F p , b ( n ) = α β {\displaystyle F_{p,b}(n)=\alpha \beta } ,

where β = n 2 mod b p {\displaystyle \beta =n^{2}{\bmod {b}}^{p}} and

α = n 2 β b p {\displaystyle \alpha ={\frac {n^{2}-\beta }{b^{p}}}}

A natural number n {\displaystyle n} is a p {\displaystyle p} -Kaprekar number if it is a fixed point for F p , b {\displaystyle F_{p,b}} , which occurs if F p , b ( n ) = n {\displaystyle F_{p,b}(n)=n} . 0 {\displaystyle 0} and 1 {\displaystyle 1} are trivial Kaprekar numbers for all b {\displaystyle b} and p {\displaystyle p} , all other Kaprekar numbers are nontrivial Kaprekar numbers.

The earlier example of 45 satisfies this definition with b = 10 {\displaystyle b=10} and p = 2 {\displaystyle p=2} , because

β = n 2 mod b p = 45 2 mod 1 0 2 = 25 {\displaystyle \beta =n^{2}{\bmod {b}}^{p}=45^{2}{\bmod {1}}0^{2}=25}
α = n 2 β b p = 45 2 25 10 2 = 20 {\displaystyle \alpha ={\frac {n^{2}-\beta }{b^{p}}}={\frac {45^{2}-25}{10^{2}}}=20}
F 2 , 10 ( 45 ) = α β = 20 25 = 45 {\displaystyle F_{2,10}(45)=\alpha \beta =20 25=45}

A natural number n {\displaystyle n} is a sociable Kaprekar number if it is a periodic point for F p , b {\displaystyle F_{p,b}} , where F p , b k ( n ) = n {\displaystyle F_{p,b}^{k}(n)=n} for a positive integer k {\displaystyle k} (where F p , b k {\displaystyle F_{p,b}^{k}} is the k {\displaystyle k} th iterate of F p , b {\displaystyle F_{p,b}} ), and forms a cycle of period k {\displaystyle k} . A Kaprekar number is a sociable Kaprekar number with k = 1 {\displaystyle k=1} , and a amicable Kaprekar number is a sociable Kaprekar number with k = 2 {\displaystyle k=2} .

The number of iterations i {\displaystyle i} needed for F p , b i ( n ) {\displaystyle F_{p,b}^{i}(n)} to reach a fixed point is the Kaprekar function's persistence of n {\displaystyle n} , and undefined if it never reaches a fixed point.

There are only a finite number of p {\displaystyle p} -Kaprekar numbers and cycles for a given base b {\displaystyle b} , because if n = b p m {\displaystyle n=b^{p} m} , where m > 0 {\displaystyle m>0} then

n 2 = ( b p m ) 2 = b 2 p 2 m b p m 2 = ( b p 2 m ) b p m 2 {\displaystyle {\begin{aligned}n^{2}&=(b^{p} m)^{2}\\&=b^{2p} 2mb^{p} m^{2}\\&=(b^{p} 2m)b^{p} m^{2}\\\end{aligned}}}

and β = m 2 {\displaystyle \beta =m^{2}} , α = b p 2 m {\displaystyle \alpha =b^{p} 2m} , and F p , b ( n ) = b p 2 m m 2 = n ( m 2 m ) > n {\displaystyle F_{p,b}(n)=b^{p} 2m m^{2}=n (m^{2} m)>n} . Only when n b p {\displaystyle n\leq b^{p}} do Kaprekar numbers and cycles exist.

If d {\displaystyle d} is any divisor of p {\displaystyle p} , then n {\displaystyle n} is also a p {\displaystyle p} -Kaprekar number for base b p {\displaystyle b^{p}} .

In base b = 2 {\displaystyle b=2} , all even perfect numbers are Kaprekar numbers. More generally, any numbers of the form 2 n ( 2 n 1 1 ) {\displaystyle 2^{n}(2^{n 1}-1)} or 2 n ( 2 n 1 1 ) {\displaystyle 2^{n}(2^{n 1} 1)} for natural number n {\displaystyle n} are Kaprekar numbers in base 2.

Set-theoretic definition and unitary divisors

The set K ( N ) {\displaystyle K(N)} for a given integer N {\displaystyle N} can be defined as the set of integers X {\displaystyle X} for which there exist natural numbers A {\displaystyle A} and B {\displaystyle B} satisfying the Diophantine equation

X 2 = A N B {\displaystyle X^{2}=AN B} , where 0 B < N {\displaystyle 0\leq B
X = A B {\displaystyle X=A B}

An n {\displaystyle n} -Kaprekar number for base b {\displaystyle b} is then one which lies in the set K ( b n ) {\displaystyle K(b^{n})} .

It was shown in 2000 that there is a bijection between the unitary divisors of N 1 {\displaystyle N-1} and the set K ( N ) {\displaystyle K(N)} defined above. Let Inv ( a , c ) {\displaystyle \operatorname {Inv} (a,c)} denote the multiplicative inverse of a {\displaystyle a} modulo c {\displaystyle c} , namely the least positive integer m {\displaystyle m} such that a m = 1 mod c {\displaystyle am=1{\bmod {c}}} , and for each unitary divisor d {\displaystyle d} of N 1 {\displaystyle N-1} let e = N 1 d {\displaystyle e={\frac {N-1}{d}}} and ζ ( d ) = d   Inv ( d , e ) {\displaystyle \zeta (d)=d\ {\text{Inv}}(d,e)} . Then the function ζ {\displaystyle \zeta } is a bijection from the set of unitary divisors of N 1 {\displaystyle N-1} onto the set K ( N ) {\displaystyle K(N)} . In particular, a number X {\displaystyle X} is in the set K ( N ) {\displaystyle K(N)} if and only if X = d   Inv ( d , e ) {\displaystyle X=d\ {\text{Inv}}(d,e)} for some unitary divisor d {\displaystyle d} of N 1 {\displaystyle N-1} .

The numbers in K ( N ) {\displaystyle K(N)} occur in complementary pairs, X {\displaystyle X} and N X {\displaystyle N-X} . If d {\displaystyle d} is a unitary divisor of N 1 {\displaystyle N-1} then so is e = N 1 d {\displaystyle e={\frac {N-1}{d}}} , and if X = d Inv ( d , e ) {\displaystyle X=d\operatorname {Inv} (d,e)} then N X = e Inv ( e , d ) {\displaystyle N-X=e\operatorname {Inv} (e,d)} .

Kaprekar numbers for F p , b {\displaystyle F_{p,b}}

b = 4k 3 and p = 2n 1

Let k {\displaystyle k} and n {\displaystyle n} be natural numbers, the number base b = 4 k 3 = 2 ( 2 k 1 ) 1 {\displaystyle b=4k 3=2(2k 1) 1} , and p = 2 n 1 {\displaystyle p=2n 1} . Then:

  • X 1 = b p 1 2 = ( 2 k 1 ) i = 0 p 1 b i {\displaystyle X_{1}={\frac {b^{p}-1}{2}}=(2k 1)\sum _{i=0}^{p-1}b^{i}} is a Kaprekar number.
  • X 2 = b p 1 2 = X 1 1 {\displaystyle X_{2}={\frac {b^{p} 1}{2}}=X_{1} 1} is a Kaprekar number for all natural numbers n {\displaystyle n} .

b = m2k m 1 and p = mn 1

Let m {\displaystyle m} , k {\displaystyle k} , and n {\displaystyle n} be natural numbers, the number base b = m 2 k m 1 {\displaystyle b=m^{2}k m 1} , and the power p = m n 1 {\displaystyle p=mn 1} . Then:

  • X 1 = b p 1 m = ( m k 1 ) i = 0 p 1 b i {\displaystyle X_{1}={\frac {b^{p}-1}{m}}=(mk 1)\sum _{i=0}^{p-1}b^{i}} is a Kaprekar number.
  • X 2 = b p m 1 m = X 1 1 {\displaystyle X_{2}={\frac {b^{p} m-1}{m}}=X_{1} 1} is a Kaprekar number.

b = m2k m 1 and p = mn m − 1

Let m {\displaystyle m} , k {\displaystyle k} , and n {\displaystyle n} be natural numbers, the number base b = m 2 k m 1 {\displaystyle b=m^{2}k m 1} , and the power p = m n m 1 {\displaystyle p=mn m-1} . Then:

  • X 1 = m ( b p 1 ) 4 = ( m 1 ) ( m k 1 ) i = 0 p 1 b i {\displaystyle X_{1}={\frac {m(b^{p}-1)}{4}}=(m-1)(mk 1)\sum _{i=0}^{p-1}b^{i}} is a Kaprekar number.
  • X 2 = m b p 1 4 = X 3 1 {\displaystyle X_{2}={\frac {mb^{p} 1}{4}}=X_{3} 1} is a Kaprekar number.

b = m2k m2m 1 and p = mn 1

Let m {\displaystyle m} , k {\displaystyle k} , and n {\displaystyle n} be natural numbers, the number base b = m 2 k m 2 m 1 {\displaystyle b=m^{2}k m^{2}-m 1} , and the power p = m n m 1 {\displaystyle p=mn m-1} . Then:

  • X 1 = ( m 1 ) ( b p 1 ) m = ( m 1 ) ( m k 1 ) i = 0 p 1 b i {\displaystyle X_{1}={\frac {(m-1)(b^{p}-1)}{m}}=(m-1)(mk 1)\sum _{i=0}^{p-1}b^{i}} is a Kaprekar number.
  • X 2 = ( m 1 ) b p 1 m = X 1 1 {\displaystyle X_{2}={\frac {(m-1)b^{p} 1}{m}}=X_{1} 1} is a Kaprekar number.

b = m2k m2m 1 and p = mn m − 1

Let m {\displaystyle m} , k {\displaystyle k} , and n {\displaystyle n} be natural numbers, the number base b = m 2 k m 2 m 1 {\displaystyle b=m^{2}k m^{2}-m 1} , and the power p = m n m 1 {\displaystyle p=mn m-1} . Then:

  • X 1 = b p 1 m = ( m k 1 ) i = 0 p 1 b i {\displaystyle X_{1}={\frac {b^{p}-1}{m}}=(mk 1)\sum _{i=0}^{p-1}b^{i}} is a Kaprekar number.
  • X 2 = b p m 1 m = X 3 1 {\displaystyle X_{2}={\frac {b^{p} m-1}{m}}=X_{3} 1} is a Kaprekar number.
Kaprekar numbers and cycles of F p , b {\displaystyle F_{p,b}} for specific p {\displaystyle p} , b {\displaystyle b}

All numbers are in base b {\displaystyle b} .

Extension to negative integers

Kaprekar numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.

See also

  • Arithmetic dynamics
  • Automorphic number
  • Dudeney number
  • Factorion
  • Happy number
  • Kaprekar's constant
  • Meertens number
  • Narcissistic number
  • Perfect digit-to-digit invariant
  • Perfect digital invariant
  • Sum-product number

Notes

References

  • D. R. Kaprekar (1980–1981). "On Kaprekar numbers". Journal of Recreational Mathematics. 13: 81–82.
  • M. Charosh (1981–1982). "Some Applications of Casting Out 999...'s". Journal of Recreational Mathematics. 14: 111–118.
  • Iannucci, Douglas E. (2000). "The Kaprekar Numbers". Journal of Integer Sequences. 3: 00.1.2. Bibcode:2000JIntS...3...12I.

Kaprekar numbers

Kaprekar Number Maths Tricks and Tips

D R Kaprekar (Indian Mathematician) Bio with [ Photos Videos ]

C program to check if a number is a Kaprekar number or not CodeVsColor

mathrecreation Some notes on the Kaprekar function